China Best Sales CNC Machined Precision C45 Steel Spur Gear Transmission Gear helical bevel gear

Product Description

Company Profile

 

 

Workshop

Detailed Photos

 

Product Description

 

Material Alloy Steel, Copper alloy(brass,silicon bronze,phosphor bronze,aluminum bronze,beryllium copper),Stainless Steel,Aluminum,Titanium, Magnesium, Superalloys,Molybdenum, Invar,,Zinc,Tungsten steel,incoloy,Nickel 200,Hastelloy, Inconel,Monel,ABS, PEEK,PTFE,PVC,Acetal.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, the wreath oxygen resin spraying, the heat disposing, hot-dip galvanizing, black oxide coating, painting, powdering, color zinc-plated, blue black zinc-plated, rust preventive oil, titanium alloy galvanized, silver plating, plastic, electroplating, anodizing etc.
Producing Equipment CNC machine,automatic lathe machine,CNC milling machine,lasering,tag grinding machine etc.
Drawing Format Pro/E, Auto CAD, CHINAMFG Works, UG, CAD/CAM, PDF
Managing Returned Goods With quality problem or deviation from drawings
Warranty Replacement at all our cost for rejected products
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order * You send us drawing or sample
* We carry through project assessment
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

Quality Control

Packaging & Shipping

Customer Reviews

FAQ

Q1:What kind of information do you need for quotation?
A: You can provide 2D/3D drawing or send your sample to our factory, then we can make according to your sample.

Q2: Can we CHINAMFG NDA?
A: Sure. We can CHINAMFG the NDA before got your drawings.

Q3: Do you provide sample?
A: Yes, we can provide you sample before mass order.

Q4: How can you ensure the quality?
A: We have profesional QC,IQC, OQC to guarantee the quality.

Q5: Delivery time?
A: For samples genearlly need 25 days. Mass production: around 30~45 days after receipt of deposit (Accurate delivery time
depends on specific items and quantities)

Q6: How about the transportation?
A: You can choose any mode of transportation you want, sea delivery, air delivery or door to door express.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: CNC Machined
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

Can aluminum gears withstand high torque and load conditions?

Aluminum gears have certain limitations when it comes to high torque and load conditions. Here’s a detailed explanation:

1. Strength: Aluminum is generally not as strong as materials like steel or cast iron. While aluminum alloys used for gears can offer good strength, they may not be as robust as traditional materials in terms of absolute strength. Under extremely high torque or heavy load conditions, there is a risk of deformation or failure of aluminum gears.

2. Design Considerations: To ensure that aluminum gears can withstand high torque and load conditions, proper design considerations are crucial. Factors such as gear geometry, tooth profile, tooth thickness, and material selection need to be carefully evaluated and optimized. Reinforcements, such as ribbing or thicker sections, can be incorporated into the gear design to enhance strength and load-bearing capacity.

3. Heat Dissipation: Aluminum has good thermal conductivity, which helps dissipate heat generated during high torque or heavy load operations. Heat can affect the performance and integrity of gears, leading to increased wear or potential failure. Proper lubrication and cooling mechanisms should be implemented to manage heat buildup and ensure optimal gear performance.

4. Surface Treatments: Surface treatments like hard anodizing or coatings can be applied to aluminum gears to improve their hardness, wear resistance, and surface durability. These treatments help mitigate the effects of high torque and load conditions, reducing the risk of surface damage or wear.

5. Application Considerations: The suitability of aluminum gears for high torque and load conditions depends on the specific application requirements. In some cases, aluminum gears may be well-suited for moderate torque and load applications, such as in certain automotive or machinery applications. However, in heavy-duty or extreme conditions, alternative materials like steel or cast iron may be more appropriate.

It’s important to note that engineering judgment, proper design practices, and thorough evaluation of the specific operating conditions are essential in determining whether aluminum gears can withstand high torque and load conditions. In critical applications where high torque or heavy loads are expected, gear manufacturers may choose materials with higher strength and load-bearing capabilities.

In summary, while aluminum gears can be used in certain high torque and load conditions, their suitability depends on factors such as gear design, material selection, heat dissipation, surface treatments, and application requirements. Careful consideration and engineering expertise are necessary to ensure safe and reliable operation of aluminum gears under these conditions.

aluminum gear

Can aluminum gears be used in aerospace and aviation applications?

Aluminum gears can indeed be used in aerospace and aviation applications. Here’s a detailed explanation:

1. Weight Reduction: Aluminum is known for its lightweight properties. In aerospace and aviation industries, weight reduction is a critical factor for improving fuel efficiency, increasing payload capacity, and enhancing overall performance. Aluminum gears offer a significant advantage over heavier materials like steel, helping to achieve weight savings without compromising strength and functionality.

2. Corrosion Resistance: Aluminum alloys are inherently corrosion-resistant, especially when compared to ferrous materials like steel. In aerospace and aviation environments, where exposure to moisture, humidity, and harsh chemicals is common, corrosion resistance is vital. Aluminum gears can withstand these corrosive conditions, reducing the risk of gear degradation and ensuring long-term reliability.

3. Thermal Conductivity: Aluminum has excellent thermal conductivity, allowing for efficient heat dissipation. In aerospace and aviation applications, where gears may be subjected to high-speed rotations or heavy loads, heat generation can be a concern. Aluminum gears can effectively transfer and dissipate heat, helping to maintain optimal operating temperatures and prevent overheating-related failures.

4. Low Noise and Vibration: Aluminum gears possess inherent damping properties, which can contribute to lower noise and vibration levels. In aerospace and aviation, noise reduction is crucial for passenger comfort, crew safety, and compliance with regulatory requirements. Aluminum gears can help reduce gear-induced noise and vibration, enhancing the overall user experience.

5. Manufacturability: Aluminum is a highly formable material, enabling complex gear designs and intricate shapes. It can be fabricated through various processes such as casting, machining, or powder metallurgy, offering flexibility in manufacturing techniques. This allows for the production of custom gear geometries and optimized designs to meet specific aerospace and aviation requirements.

6. Compatibility with Composites: The aerospace and aviation industries widely use composite materials for their high strength-to-weight ratios. Aluminum gears can be designed to be compatible with composite structures, integrating seamlessly with other components in aircraft or spacecraft systems. This compatibility allows for efficient transmission of motion and power within composite assemblies.

7. Regulatory Compliance: Aluminum is a well-established material in aerospace and aviation industries, and its use in gears aligns with industry standards and regulatory requirements. The performance and reliability of aluminum gears have been extensively studied and validated, making them a trusted choice for critical applications.

In summary, aluminum gears are well-suited for aerospace and aviation applications due to their lightweight nature, corrosion resistance, thermal conductivity, low noise and vibration characteristics, manufacturability, compatibility with composites, and compliance with industry standards. These factors make aluminum gears a viable option for enhancing performance, efficiency, and safety in the aerospace and aviation sectors.

aluminum gear

What are the advantages of using aluminum gears in machinery?

Using aluminum gears in machinery offers several advantages. Here’s a detailed explanation:

1. Lightweight: One of the primary advantages of aluminum gears is their lightweight nature. Aluminum is significantly lighter than other commonly used gear materials such as steel or cast iron. This lightweight property reduces the overall weight of the machinery, resulting in benefits such as improved energy efficiency, reduced inertia, and easier handling and installation.

2. Corrosion Resistance: Aluminum gears can exhibit good corrosion resistance, especially when they are made from corrosion-resistant aluminum alloys. This makes them suitable for machinery operating in environments where exposure to moisture, chemicals, or other corrosive substances is a concern. The corrosion resistance of aluminum gears helps prolong their lifespan and ensures reliable performance in such conditions.

3. Low Noise: Aluminum gears have inherent damping properties that help reduce noise levels in machinery. The natural damping characteristics of aluminum help absorb vibrations and minimize noise generation during gear operation. This makes aluminum gears particularly advantageous in applications where noise reduction is important, such as in precision machinery or equipment used in noise-sensitive environments.

4. Heat Dissipation: Aluminum has excellent thermal conductivity, allowing for effective heat dissipation. When used in machinery, aluminum gears can help dissipate heat generated during operation, preventing overheating and maintaining optimal operating temperatures. Efficient heat dissipation contributes to the longevity and reliability of the machinery components.

5. Cost-Effective: Aluminum is generally more cost-effective compared to other metals commonly used for gears, such as steel or bronze. The abundance of aluminum as a raw material and its relatively low production costs make aluminum gears a cost-effective choice for machinery manufacturers. Additionally, the lightweight nature of aluminum gears can lead to cost savings in terms of transportation, installation, and energy consumption.

6. Design Flexibility: Aluminum gears offer design flexibility due to their ease of machining and formability. They can be manufactured with intricate tooth profiles and custom geometries to suit specific machinery requirements. The design flexibility of aluminum gears allows for optimization of gear performance, efficiency, and load-carrying capacity.

7. Electrical Conductivity: Aluminum is an excellent conductor of electricity. In machinery where electrical conductivity is required, such as in electric motors or equipment with electromagnetic components, aluminum gears can help facilitate efficient electrical connections and reduce electrical losses.

While aluminum gears offer numerous advantages, it’s important to consider their limitations. Aluminum has lower strength compared to materials like steel, which may restrict their use in high-load or high-torque applications. Additionally, proper lubrication and maintenance practices are crucial to ensure optimal performance and prevent excessive wear in aluminum gears.

In summary, the advantages of using aluminum gears in machinery include their lightweight nature, corrosion resistance, low noise levels, heat dissipation capabilities, cost-effectiveness, design flexibility, and electrical conductivity. These advantages make aluminum gears suitable for a wide range of machinery applications, particularly those where weight reduction, corrosion resistance, noise reduction, and thermal management are essential considerations.

China Best Sales CNC Machined Precision C45 Steel Spur Gear Transmission Gear helical bevel gearChina Best Sales CNC Machined Precision C45 Steel Spur Gear Transmission Gear helical bevel gear
editor by Dream 2024-05-07